Photo-initiated enhanced antibacterial therapy using a non-covalent functionalized graphene oxide nanoplatform

2021 
This study describes a novel antibacterial phototherapeutic platform for highly efficient healing of bacteria-infected wounds. It is based on the photodynamic and physical actions of a zinc tetraaminophthalocyanine-modified graphene oxide nanocomposite produced via non-covalent functionalization. The nanocomposite is positively charged and can easily capture negatively charged bacteria via electrostatic interactions. The antibacterial action is two-fold: (1) reactive oxygen species are produced by the phthalocyanine photosensitizer after short-term exposure to 680 nm light and (2) the graphene oxide can physically cut bacterial cell membranes. These enhanced activities can kill Gram-positive and Gram-negative bacteria at very low dosages. An ultrastructural examination indicates that this nanocomposite causes enormous damage to bacterial morphology and leakage of intracellular substances that lead to bacterial death. A rat wound model is used to demonstrate that the proposed phototherapeutic platform has low cytotoxicity and can promote rapid healing in bacteria-infected wounds. These results suggest that the integration of different antibacterial methods into a single nanotherapeutic platform is a promising strategy for anti-infective treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []