Herpes simplex virus type 2 mutagenesis: characterization of mutants induced at the hprt locus of nonpermissive XC cells.

1986 
Abstract In a previous report, herpes simplex virus type 2 (HSV-2) was shown to increase the frequency of mutation at the hypoxanthine phosphoribosyltransferase (hprt) locus of nonpermissive rat XC cells (L. Pilon, A. Royal, and Y. Langelier, J. Gen. Virol. 66:259-265, 1985). A series of 17 independent mutants were isolated after viral infection together with 12 spontaneous noninfected mutants to characterize the nature of the mutations induced by the virus at the molecular level. The DNA of the mutants isolated after viral infection was probed with cloned HSV-2 fragments representing the entire genome. In these mutants, no authentic HSV-2 hybridization could be detected. This was indicative of a mechanism of mutagenesis which did not require the permanent integration of viral sequences in the host genome. The structure of the hprt gene was determined by the method of Southern (J. Mol. Biol. 98:503-517, 1975), and the level of hprt mRNA was analyzed by Northern blots. Except for the identification of one deletion mutant in each of the two groups, the HPRT- clones showed no evidence of alteration in their hprt gene. A total of 7 of 12 spontaneous mutants and 11 of 15 mutants isolated from the infected population transcribed an hprt mRNA of the same size and abundance as did the wild-type cells. Thus, the majority of the mutants seemed to have a point mutation in their hprt structural gene. Interestingly, the proportion of the different types of mutations was similar in the two groups of mutants. This analysis revealed that HSV-2 infection did not increase the frequency of rearrangements but rather that it probably induced a general increase of the level of mutations in the cells. This type of response is thought to be compatible with the biology of the virus, and the possible mechanisms by which HSV-2 induces somatic mutations in mammalian cells are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    36
    Citations
    NaN
    KQI
    []