Synthesis and Solid-State Rotational Dynamics of Molecular Gyroscopes with a Robust and Low Density Structure Built with a Phenylene Rotator and a Tri(meta-terphenyl)methyl Stator

2011 
Recent studies suggest that the rotational dynamics in crystals of molecular gyroscopes become more favorable (i.e., faster) when the packing coefficient of the corresponding lattice is decreased by increasing the steric bulk of the stator, as expected for structures with high protuberances or deep cavities. In an effort to explore the effects of increased stator size on the solid-state dynamics of these crystalline models for molecular machines, molecular gyroscope 4 with an “exploded” bis(tri(meta-terphenyl)methyl) stator was synthesized. Single crystal X-ray diffraction analysis revealed a packing structure with two crystallographically distinct gyroscope molecules and four ethyl acetate molecules per unit cell. Although a relatively low packing coefficient of 0.68 was determined for the corresponding packing motif, we noticed that rotators at the two sites have significantly different environments. The solid state rotational dynamics of the two central phenylenes in an ethyl acetate clathrate of 4 wer...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    22
    Citations
    NaN
    KQI
    []