Scalar Field Cosmologies Hidden Within the Nonlinear Schrodinger Equation

2013 
The nonlinear, cubic Schrodinger (NLS) equation has numerous physical applications, but in general is very difficult to solve. Nonetheless, under certain circumstances parameters quantifying the width, momentum and energy of the wavefunction evolve under a closed set of ordinary differential equations. It is shown that for the case of the radial, two dimensional NLS equation, such evolution equations may be mapped directly onto the cosmological Friedmann equations for a spatially flat and isotropic universe sourced by a self-interacting scalar field and a barotropic perfect fluid. Consequently, analytical techniques that have been developed to study the dynamics of such cosmological models may be applied to gain insight into aspects of nonlinear quantum mechanics. In this paper, the Hamilton-Jacobi formalism of the Friedmann equations, where the scalar field is viewed as the dynamical variable, is developed within this context. Algorithms for finding exact solutions are presented and the scaling solutions determined. A form-invariance of the wavefunction evolution equations is identified. The analysis has direct applications to anisotropic Bose-Einstein condensation. The Ermakov-Pinney equation plays a central role in establishing the correspondence between the quantum-mechanical and gravitational systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    8
    Citations
    NaN
    KQI
    []