PatchMAN docking: Modeling peptide-protein interactions in the context of the receptor surface

2021 
Peptide docking can be perceived as a subproblem of protein-protein docking. However, due to the short length and flexible nature of peptides, many do not adopt one defined conformation prior to binding. Therefore, to tackle a peptide docking problem, not only the relative orientation between the two partners, but also the bound conformation of the peptide needs to be modeled. Traditional peptide-centered approaches use information about the peptide sequence to generate a representative conformer ensemble, which can then be rigid body docked to the receptor. Alternatively, one may look at this problem from the viewpoint of the receptor, namely that the protein surface defines the peptide bound conformation.We present PatchMAN (Patch-Motif AligNments), a novel peptide docking approach which uses structural motifs to map the receptor surface with backbone scaffolds extracted from protein structures. On a non-redundant set of protein-peptide complexes, starting from free receptor structures, PatchMAN successfully models and identifies near-native peptide-protein complexes in 62% / 81% within 2.5[A] / 5[A] RMSD, with corresponding sampling in 81% / 100% of the cases, outperforming other approaches. PatchMAN leverages the observation that structural units of peptides with their binding pocket can be found not only within interfaces, but also within monomers. We show that the conformation of the bound peptide is sampled based on the structural context of the receptor only, without taking into account any sequence information. Beyond peptide docking, this approach opens exciting new avenues to study principles of peptide-protein association, and to the design of new peptide binders.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []