Laser-controlled rotational cooling ofNa2based on exceptional points

2013 
Exceptional points (EPs) corresponding to resonance coalescence (i.e., complex energy degeneracy and identical wave functions) occur in many areas of non-Hermitian physics and, in particular, in laser-induced molecular dynamics for specific choices of two control parameters. We have previously shown [Atabek, et al., Phys. Rev. Lett. 106, 173002 (2011)] how these control parameters, namely, the wavelength and the intensity of the external field, have to be tuned to take advantage of EPs for selective vibrational transfers within a reduced one-dimensional model describing a diatomic molecule with frozen rotation. Moreover, the possibility offered by such transfers to adiabatically transport all the vibrational population to the ground $v=0$ level has been presented as a realistic vibrational cooling strategy with an entropy flow toward the field-induced dissociative channel. The purpose of the present article is twofold: (i) Extend the model to a full three-dimensional quantum description of the rotating molecule and discuss the existence, determination, and role of EPs involving rovibrational resonances; (ii) examine the possibility for a further challenging step in obtaining ultracold molecules through combined vibrational and rotational laser control dynamics, aiming at total purification for reaching the ground ($v=J=0$) rovibrational level. The illustrative example is the ${\mathrm{Na}}_{2}$ molecule for which translationally cold species have experimentally been obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    5
    Citations
    NaN
    KQI
    []