An Energy-Aware Data Transmission Scheme under the Guarantee of Reliability for 3D WSNs

2020 
Three-dimensional wireless sensor networks (3D WSNs) play an important role to provide data collection services for Internet of things (IoT) in the real applications. However, many of the existing WSN data collection researches are based on a relatively simple linear or plane network model. The three-dimensional space problems are simplified to two-dimensional plane, which limits the applicability. In this paper, the data collection in 3D WSN is studied. In the three-dimensional space, we firstly analyze the data loads, energy consumption, and end-to-end (E2E) delay of each node when the network is following the shortest path routing. The mathematical analysis of data loads and E2E delay of each node are presented. Based on the analysis of data loads and energy consumption, an energy-ware data transmission scheme is proposed to achieve the trade-off optimization between the E2E delay and network lifetime under the guarantee of the transmission reliability. The key point of the proposed scheme is to make fully use of the unbalanced energy consumption of the 3D WSN. The performance of the proposed scheme is discussed, analyzed, and evaluated. The theoretical analysis and simulation results show that the E2E network delay and energy efficiency can be improved under the constraint of transmission reliability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []