MWCNT/NiO-Fe3O4 hybrid nanotubes for efficient electromagnetic wave absorption

2018 
Abstract Severe electromagnetic (EM) interference pollution as the fourth pollution has posed an ever increasing threat to human health and environment. These dangers have created an urgent need for the development of EM absorbers to address this issue. Herein, nanosized NiO and Fe 3 O 4 particles were decorated along multiwalled carbon nanotubes (MWCNT) to achieve high-performance attenuation of EM waves of 2–18 GHz and a power frequency of 50 Hz. The hybrid nanotubes were prepared by an electroless nickel plating-oxidization process to form MWCNT/NiO, then followed by a polyol approach to produce triple-component MWCNT/NiO-Fe 3 O 4 hybrid nanotubes. The microstructure of the hybrid was characterized by transmission electron microscopy, X-ray diffraction and vector network analysis. It was found that the multi-component structure endows the MWCNT/NiO-Fe 3 O 4 hybrid nanotubes with an effective EM absorption band (RL  3 O 4 hybrid nanotubes had the ability to attenuate 75% of the electrical field and 50% of the magnetic field of a 50 Hz power frequency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    27
    Citations
    NaN
    KQI
    []