Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum
1999
Higher plants efficiently conserve energy ATP in cellulose biosynthesis by expression of sucrose synthase, in which the high free energy between glucose and fructose in sucrose can be conserved and used for the synthesis of UDP-glucose. A mixture of sucrose synthase and bacterial cellulose synthase proceeded to form UDP-glucose from sucrose plus UDP and to synthesize 1,4-β-glucan from the sugar nucleotide. The mutant sucrose synthase, which mimics phosphorylated sucrose synthase, enhanced the reaction efficiency (Vmax/Km) on 1,4-β-glucan synthesis, in which the incorporation of glucose from sucrose was increased at low concentrations of UDP. Because UDP formed after glucosyl transfer can be directly recycled with sucrose synthase, UDP-glucose formed appears to show high turnover with cellulose synthase in the coupled reaction. The expression of sucrose synthase in Acetobacter xylinum not only changed sucrose metabolism but also enhanced cellulose production, in which UDP-glucose was efficiently formed from sucrose. Although the level of UDP-glucose in the transformant with mutant sucrose synthase cDNA was only 1.6-fold higher than that in plasmid-free cells, the level of UDP was markedly decreased in the transformant. The results show that sucrose synthase serves to channel carbon directly from sucrose to cellulose and recycles UDP, which prevents UDP build-up in cellulose biosynthesis.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
22
References
92
Citations
NaN
KQI