Three-Dimensional Simulations of the Electrothermal and Terahertz Emission Properties of Bi2Sr2CaCu2O8 Intrinsic Josephson Junction Stacks

2016 
We use 2D coupled sine-Gordon equations combined with 3D heat diffusion equations to numerically investigate the thermal and electromagnetic properties of a 250×70  μm2 intrinsic Josephson junction stack. The 700 junctions are grouped to 20 segments; we assume that in a segment all junctions behave identically. At large input power, a hot spot forms in the stack. Resonant electromagnetic modes oscillating either along the length [(0, n) modes] or the width [(m, 0) modes] of the stack or having a more complex structure can be excited both with and without a hot spot. At fixed bath temperature and bias current, several cavity modes can coexist in the absence of a magnetic field. The (1, 0) mode considered to be the most favorable mode for terahertz emission can be stabilized by applying a small magnetic field along the length of the stack. A strong field-induced enhancement of the emission power is also found in experiment for an applied field around 5.9 mT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    19
    Citations
    NaN
    KQI
    []