Advanced macro drilling of carbon fibre reinforced plastics for aerospace applications

2019 
In the aviation industry, a major market for carbon fibre reinforced plastics (CFRP), <40.000 drilling operations are performed throughout the assembly process of a small aircraft. Additionally, the drive to minimize costs and time are prevalent in the manufacturing process. The quality requirements in the aviation industry are set to a high level and drilling tools have to be changed frequently, causing considerable costs in terms of tooling and time losses. Laser processing offers benefits such as flexible, and wear free cutting, which contributes to the optimization of processing costs. In this investigation a laser machine, process control, processing strategies and handling equipment adapted to high precision macro drilling and low cycle times were presented. The setup included a novel short pulsed high power laser source by TRUMPF Laser GmbH emitting at λ = 1030 nm integrated in a 5-axis machine. The lab-state laser source provides pulses at tp = 20 ns, at a maximum pulse energy of Ep = 100 mJ and a maximum average power of Pavg = 1.5 kW, while maintaining a very good beam quality, allowing small focus diameters. Due to a large variety of parameters that have an influence on the process, a test plan based on design of experiments was applied to identify ideal parameter fields. Parameters optimized towards high ablation rates and orthogonal kerf angles were identified. The results revealed a promising industrial processing option for high quality macro boreholes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    1
    Citations
    NaN
    KQI
    []