Industrial Swine and Poultry Production Causes Chronic Nutrient and Fecal Microbial Stream Pollution

2015 
Concentrated animal feeding operations (CAFOs) are the principal means of livestock production in the USA and Europe, and these industrial-scale facilities have a high potential to pollute nearby waterways. Chemical and biological stream water quality of a swine and poultry CAFO-rich watershed was investigated on 10 dates during 2013. Geometric mean fecal coliform counts were in the thousands at five of seven sites, especially in locations near swine waste sprayfields. Nitrate concentrations were very high and widespread throughout the watershed, with some individual samples yielding >10 mg-N/L. Ammonium concentrations were likewise high, but greatest near swine waste sprayfields, ranging up to 38 mg-N/L. Five-day biochemical oxygen demand (BOD5) concentrations exceeded 10 mg/L in 11 of 70 stream samples, reaching as high as 88 mg/L. BOD5 concentrations were significantly correlated with components of animal waste including total organic carbon, ammonium, and phosphorus, as well as the nutrient response variable chlorophyll a. The degree of nutrient and fecal contamination did not significantly differ between rainy and dry periods, indicating that surface and groundwater pollution occurs independently of stormwater runoff. This research shows that industrial-scale swine and poultry production leads to chronic pollution that is both a human health and ecosystem hazard. There are approximately 450,000 CAFOs currently operating in the USA, with the majority located in watersheds feeding major riverine and estuarine systems with known water quality problems. Current US waste management protocols for this widespread system of livestock production fail to protect freshwater and estuarine ecosystems along the US Mid-Atlantic, Southeast and Gulf coasts, and expansion into industrializing nations will likely bring severe pollution with it.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    38
    Citations
    NaN
    KQI
    []