Regulation of bladder dynamic elasticity: a novel method to increase bladder capacity and reduce pressure using pulsatile external compressive exercises in a porcine model

2021 
Dynamic elasticity is a biomechanical property of the bladder in which muscle compliance can be acutely adjusted through passive stretches and reversed with active contractions. The aim of this study was to determine if manipulating dynamic elasticity using external compression could be used as a novel method to acutely increase bladder capacity and reduce bladder pressure in a porcine model. Ex vivo experiment: bladders underwent continuous or pulsatile compression after establishing a reference pressure at bladder capacity. Bladders were then filled back to the reference pressure to determine if capacity could be acutely increased. In-vivo experiments: bladders underwent five cycles of pulsatile external compression with ultrasound confirmation. Pre and post-compression pressures were measured, and pressure was measured again 10 min post-compression. Ex vivo experiment: pulsatile compression demonstrated increased bladder capacity by 16% (p = 0.01). Continuous compression demonstrated increased capacity by 9% (p < 0.03). Comparison of pulsatile to continuous compression showed that the pulsatile method was superior (p = 0.03). In-vivo experiments: pulsatile external compression reduced bladder pressure by 19% (p < 0.00001) with a return to baseline 10 min post-compression. These results suggest that regulation of bladder dynamic elasticity achieved with external compression can acutely decrease bladder pressure and increase bladder capacity. Pulsatile compression was found to be more effective as compared to continuous compression. These results highlight the clinical potential for use of non-invasive pulsatile compression as a therapeutic technique to increase bladder capacity, decrease bladder pressure, and reduce the symptoms of urinary urgency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []