Targeting the Untargetable: Predicting Pramlintide Resistance Using a Neural Network Based Cellular Automata

2017 
De novo resistance is a major issue for the use of targeted anticancer drugs in the clinic. By integrating experimental data we have created a hybrid neural network/agent-based model to simulate the evolution and spread of resistance to the drug Pramlintide in cutaneous squamous cell carcinoma. Our model can eventually be used to predict patient responses to the drug and thus en- able clinicians to make decisions regarding personalized, precision treatment regimes for patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []