Physical unclonable functions-based linear encryption against code reuse attacks

2016 
Recently, code reuse attacks (CRAs) have emerged as a new class of ingenious security threatens. Attackers can utilize CRAs to hijack the control flow of programs to perform malicious actions without injecting any codes. Existing defenses against CRAs often incur high memory and performance overheads or require extending the existing processors' instruction set architectures (ISAs). To tackle these issues, we propose a hardware-based control flow integrity (CFI) that employs physical unclonable functions (PUF)-based linear encryption architecture (LEA) to protect against CRAs with negligible hardware extending and run time overheads. The proposed method can protect ret and indirect jmp instructions from return oriented programming (ROP) and jump oriented programming (JOP) without any additional software manipulations and extending ISAs. The pre-process will be conducted on codes once the executable binary is loaded into memory, and the real-time control flow verification based on LEA can be done while ret and jmp instructions are executed. Performance evaluations on benchmarks show that the proposed method only introduces 0.61% run-time overhead and 0.63% memory overhead on average.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    21
    Citations
    NaN
    KQI
    []