A method for the experimental identification of equivalent viscoelastic models from vibration of thin plates

2021 
Abstract Aim of the present study is the identification of equivalent viscoelastic models for layered thin walled structures, obtained from vibration measurement only, able to fit the experimental data on a relatively wide frequency range by means of a minimum number of parameters. A novel approach is proposed, based on a definition of an equivalent modal damping ratio applied to the circle-fit technique, to overcome the difficulties related to the identification of modal parameters when adopting non-conventional viscoelastic models. When the structural internal dissipative effects are dominant, this procedure identifies the parameters of an equivalent Young’s modulus in the frequency domain, representing the viscoelastic properties of a homogenized structure as a scalar function with frequency-dependent real and imaginary parts. The proposed procedure is applied to the analysis of Aluminum plates coated by damping pads and of plates made by Quiet Aluminum. To fit the experimentally found equivalent modal damping ratios, several viscoelastic models are adopted and compared (viscous, hysteretic, generalized Maxwell, fractional derivative damping, and in particular the Fractional Kelvin-Voigt model), assessing the accuracy of the identified parameters by comparison of numerically simulated with experimentally measured frequency response functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []