Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?
2020
The Adam–Gibbs theory of glass formation posits that the growth in the activation barrier of fragile liquids on cooling emerges from a loss of configurational entropy and concomitant growth in “cooperatively rearranging regions” (CRRs). A body of literature over 2 decades has suggested that “string-like” cooperatively rearranging clusters observed in molecular simulations may be these CRRs—a scenario that would have profound implications for the understanding of the glass transition. The central element of this postulate is the report of an apparent zero-parameter relationship between the mass of string-like CRRs and the relaxation time. Here, we show, based on molecular dynamics simulations of multiple glass-forming liquids, that this finding is the result of an implicit adjustable parameter—a “replacement distance”. This parameter is equivalent to an adjustable exponent within a generalized Adam–Gibbs relation, such that it tunes the entire functional form of the relation. Moreover, we are unable to fin...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
3
Citations
NaN
KQI