A Model of Peptide Triazole Entry Inhibitor Binding to HIV-1 gp120 and the Mechanism of Bridging Sheet Disruption

2013 
Peptide triazole (PT) entry inhibitors prevent HIV-1 infection by blocking the binding of viral gp120 to both the HIV-1 receptor and the coreceptor on target cells. Here, we used all-atom explicit solvent molecular dynamics (MD) to propose a model for the encounter complex of the peptide triazoles with gp120. Saturation transfer difference nuclear magnetic resonance (STD NMR) and single-site mutagenesis experiments were performed to test the simulation results. We found that docking of the peptide to a conserved patch of residues lining the “F43 pocket” of gp120 in a bridging sheet naive gp120 conformation of the glycoprotein led to a stable complex. This pose prevents formation of the bridging sheet minidomain, which is required for receptor–coreceptor binding, providing a mechanistic basis for dual-site antagonism of this class of inhibitors. Burial of the peptide triazole at the gp120 inner domain–outer domain interface significantly contributed to complex stability and rationalizes the significant con...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    26
    Citations
    NaN
    KQI
    []