Rough-Wall Heat Flux Augmentation Analysis Within the ExoMars Project

2016 
Surface roughness, especially if enhanced due to ablative form change, increases skin friction drag and convective heat transfer over reentry vehicles. Although the corresponding heat flux augmentation is usually lower compared to increased friction, careful consideration in the prediction of the resulting heat load levels is required. Within the European Mars mission ExoMars, the potential roughness impact on the thermal protection system of the descent module has been analyzed based on analytical predictions, numerical calculations, and dedicated experimental campaigns. This paper describes the experimental efforts in the compressible flow regime to study the impact of roughness at representative conditions. The data are discussed based on comparisons with prediction methods and results of other investigators. Based on these data, the numerical predictive capabilities within the ExoMars program are characterized and validated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    5
    Citations
    NaN
    KQI
    []