Local chemical and topological order in Al-Tb and its role in controlling nanocrystal formation

2012 
Abstract How the chemical and topological short- to medium-range order develops in Al–Tb glass and its ultimate effect on the control of the high number density of face-centered-cubic-Al (fcc-Al) nuclei during devitrification are described. A combined study using high-energy X-ray diffraction (HEXRD), atom probe tomography (APT), transmission electron microscopy and fluctuation electron microscopy (FEM) was conducted in order to resolve the local structure in amorphous Al 90 Tb 10 . Reverse Monte Carlo simulations and Voronoi tessellation analysis based on HEXRD experiments revealed a high coordination of Al around Tb atoms in both liquid and amorphous states. APT results show Al-rich and Al-depleted regions within the as-quenched alloy. A network structure of Tb-rich clusters divides the matrix into nanoscale regions where Al-rich clusters are isolated. It is this finely divided network which allows the amorphous structure to form. Al-rich regions are the locus for fcc-Al crystallization, which occurs before the intermetallic crystallization. FEM reveals medium-range ordered regions ∼2 nm in diameter, consistent with fcc-Al and trigonal-like Al 3 Tb crystal structures. We propose that the high coordination of Al around Tb limits diffusion in the intermetallic network, allowing for the isolated Al-rich regions to form at high density. These regions are responsible for the extremely high density of Al nanocrystal nuclei.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    37
    Citations
    NaN
    KQI
    []