Tris(1,3-dichloro-2-propyl) phosphate accelerated the aging process induced by the 4-hydroxynon-2-enal response to reactive oxidative species in Caenorhabditis elegans

2019 
Abstract Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in environmental media and biological samples. However, knowledge of its adverse health consequences is limited. In the current study, Caenorhabditis elegans ( C. elegans , L1 larvae) were exposed to TDCPP at environmentally relevant concentrations (control, 0.1, 1, 100 and 1000 μg L −1 ) for 72 h to explore any association between TDCPP and the aging process. Some of the degenerative age-related indicators were observed, including locomotion behaviors and lifespan. As crucial biomarkers of aging, the accumulation of lipofuscin, and lipid peroxidation (LPO) products exemplified by 4-hydroxynon-2-enal (4-HNE) were detected. This product forms as a result of oxidative stress, as confirmed by an N-acetyl-L-cysteine (NAC) pharmacological assay. Moreover, a significant increase in reactive oxide species (ROS) production in a dose-dependent manner using a fluorescent probe was observed. For the underlying molecular mechanism of the above aging phenotypes, significantly upregulated transcription of genes related to antioxidant systems, especially a subset of glutathione S-transferase ( gst-5, gst-6, gst-9, gst-10, gst-19, gst-24, gst-26, gst-29, gst-33, and gst-38 ), was found by RNA-Seq and further confirmed by RT-qPCR. The elevated glutathione S-transferase (GST) was attributed to the significant increase in 4-HNE because mutations in gst-5 and gst-24 inhibited the conjugation of GSTs with 4-HNE. Therefore, GST play an indispensable role in the detoxification process of TDCPP exposure and further confirmed LPO accumulation at the molecular mechanism level. In conclusion, TDCPP accelerated the aging process induced by the LPO products, 4-HNE, response to reactive oxidative species in C. elegans .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    16
    Citations
    NaN
    KQI
    []