Elemental mercury removal from syngas at high-temperature using activated char pyrolyzed from biomass and lignite

2016 
Activated char obtained by the co-pyrolysis of a mixture of lignite and biomass impregnated with ZnCl2 solution was found to be effective for the high-temperature capture of mercury from syngas. The prepared samples were characterized by X-ray photoelectron spectroscopy, Hg-thermal programmed desorption as well as Brunauer- Emmett-Teller analysis. The results show that activated char exhibits a large surface area as well as abundant micropores and C-Cl, C=O, and COOH functional groups. During the chemisorption of mercury, gaseous Hg0 is first oxidized by C-Cl to HgCl2; HgCl2 which acts as the intermediate product then reacts with the C=O and COOH functional groups on the surface of activated char to generate Hg-OM. At high adsorption temperatures, Hg-OM on the adsorbent surface can further decompose and generate HgO. The C-Cl group is important for the first oxidation step of gaseous Hg0, and the formation of HgCl2 is the rate-determining step for the entire process of adsorption.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    14
    Citations
    NaN
    KQI
    []