Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells

2019 
Abstract The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO 2 -NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO 2 -NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy. The cytotoxic effects were mostly slight. After light exposure, the largest cytotoxicity (WST-1 assay) was observed for rods; P25, bipyramids and platelets showed a similar effect; no effect was induced by food grade. No LDH release was detected, confirming the low effect on plasma membrane. Food grade and platelets induced direct genotoxicity while P25, food grade and platelets caused oxidative DNA damage. No genotoxic or oxidative damage was induced by bipyramids and rods. Biological effects were overall lower in darkness than after light exposure. Considering that only food grade, P25 and platelets (more agglomerated) were internalized by cells, the uptake resulted correlated with genotoxicity. In conclusion, cytotoxicity of NPs was low and affected by shape and light exposure, while genotoxicity was influenced by cellular-uptake and aggregation tendency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    28
    Citations
    NaN
    KQI
    []