Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: a systematic study

2017 
With a view to the design of hard magnets without rare earths we explore the possibility of large magnetocrystalline anisotropy energies in Heusler compounds that are unstable with respect to a tetragonal distortion. We consider the Heusler compounds Fe2YZ with Y = (Ni, Co, Pt), and Co2YZ with Y = (Ni, Fe, Pt) where, in both cases, Z = (Al, Ga, Ge, In, Sn). We find that for the Co2NiZ, Co2PtZ, and Fe2PtZ families the cubic phase is always, at T = 0, unstable with respect to a tetragonal distortion, while, in contrast, for the Fe2NiZ and Fe2CoZ families this is the case for only 2 compounds—Fe2NiGe and Fe2NiSn. For all compounds in which a tetragonal distortion occurs we calculate the magnetocrystalline anisotropy energy (MAE) finding remarkably large values for the Pt containing Heuslers, but also large values for a number of the other compounds (e.g. Co2NiGa has an MAE of −2.38 MJ m−3). The tendency to a tetragonal distortion we find to be strongly correlated with a high density of states (DOS) at the Fermi level in the cubic phase. As a corollary to this fact we observe that upon doping compounds for which the cubic structure is stable such that the Fermi level enters a region of high DOS, a tetragonal distortion is induced and a correspondingly large value of the MAE is then observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    33
    Citations
    NaN
    KQI
    []