Caffeine regulates GABA transport via A1R blockade and cAMP signaling

2019 
Abstract Caffeine is the most consumed psychostimulant drug in the world, acting as a non-selective antagonist of adenosine receptors A1R and A2AR, which are widely expressed in retinal layers. We have previously shown that caffeine, when administered acutely, acts on A1R to potentiate the NMDA receptor-induced GABA release. Now we asked if long-term caffeine exposure also modifies GABA uptake in the avian retina and which mechanisms are involved in this process. Chicken embryos aged E11 were injected with a single dose of caffeine (30 mg/kg) in the air chamber. Retinas were dissected on E15 for ex vivo neurochemical assays. Our results showed that [3H]-GABA uptake was dependent on Na+ and blocked at 4 °C or by NO-711 and caffeine. This decrease was observed after 60 min of [3H]-GABA uptake assay at E15, which is accompanied by an increase in [3H]-GABA release. Caffeine increased the protein levels of A1R without altering ADORA1 mRNA and was devoid of effects on A2AR density or ADORA2A mRNA levels. The decrease of GABA uptake promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA) but not by A2AR activation with CGS 21680. Caffeine exposure increased cAMP levels and GAT-1 protein levels, which was evenly expressed between E11-E15. As expected, we observed an increase of GABA containing amacrine cells and processes in the IPL, also, cAMP pathway blockage by H-89 decreased caffeine mediated [3H]-GABA uptake. Our data support the idea that chronic injection of caffeine alters GABA transport via A1R during retinal development and that the cAMP/PKA pathway plays an important role in the regulation of GAT-1 function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    4
    Citations
    NaN
    KQI
    []