Surface defects detection of paper dish based on Mask R-CNN

2018 
Machine vision is widely used in the detection of surface defects in industrial products. However, traditional detection algorithms are usually specialized and cannot be generalized to detect all types of defects. Object detection algorithms based on deep learning have powerful learning ability and can identify various types of defects. This paper applied object detection algorithm to defects detection of paper dish. We first captured the images with different shapes of defects. Then defects in these images were annotated and integrated for model training. Next, the model Mask R-CNN were trained for defects detection. At last, we tested the model on different defects categories. Not only the category and the location of the defect in the image could be got, but also the pixel segmentation were given. The experiments show that Mask R-CNN is a successful approach for defect detection task, which can quickly detect defects with a high accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    3
    Citations
    NaN
    KQI
    []