Peculiarities of helium bubble formation and helium behavior in vanadium alloys of different chemical composition
2015
Abstract The influence of alloying of vanadium by Ti and Fe on helium bubble formation, gaseous swelling and helium release peculiarities is investigated by means of transmission electron microscopy and helium thermal desorption spectrometry (HTDS). The samples were irradiated by 40 keV He + ions up to a fluence of 5 ⋅ 10 20 m −2 at 293 and 923 K. It is found that large faceted pores/bubbles are formed in pure vanadium and it has the highest gaseous swelling. Alloying by any used quantity of Ti (from 0.1 up to 10 wt.%) or Fe (from 1 up to 10 wt.%) essentially decreases the helium swelling. The effect of alloying of vanadium by Ti on the bubble sizes and the helium swelling is nonmonotonic. The density of bubbles increases significantly and their sizes and swelling grow monotonically with increasing the Fe content in vanadium. With low-temperature helium implantation, alloying of V by Ti shifts the HTDS peaks to higher temperatures and the temperatures of peaks are decreased with increasing the Fe concentration. A significant portion of the helium releases in a high-temperature area beyond the main peak temperatures in the HTDS spectra. It is assumed that this is caused by formation of helium bubbles on the surfaces of incoherent particles of secondary phases (oxides, nitrides), having high binding energies with these particles.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
10
References
10
Citations
NaN
KQI