Stable Ti3C2Tx MXene-Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting.

2021 
Extracting salinity gradient energy through a nanomembrane is an efficient way to obtain clean and renewable energy. However, the membranes with undesirable properties, such as low stability, high internal resistance, and low selectivity, would limit the output performance. Herein, we report two-dimensional (2D) laminar nanochannels in the hybrid Ti3C2Tx MXene/boron nitride (MXBN) membrane with excellent stability and reduced internal resistance for enhanced salinity gradient energy harvesting. The internal resistance of the MXBN membrane is significantly reduced after adding BN in a pristine MXene membrane, due to the small size and high surface charge density of BN nanosheets. The output power density of the MXBN membrane with 44 wt % BN nanosheets reaches 2.3 W/m2, almost twice that of a pristine MXene membrane. Besides, the output power density can be further increased to 6.2 W/m2 at 336 K and stabilizes for 10 h at 321 K, revealing excellent structure stability of the membrane in long-term aqueous conditions. This work presents a feasible method for improving the channel properties, which provides 2D layered composite membranes in ion transport, energy extraction, and other nanofluidic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    7
    Citations
    NaN
    KQI
    []