Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation

2020 
Abstract Emergency supply of blood in disasters is a crucial task for humanitarian aid. In this paper, we present a bi-objective robust optimization model for the design of blood supply chains that are resilient to disaster scenarios. The proposed two-stage stochastic optimization model aims at minimizing the time and cost of delivering blood to hospitals after the occurrence of a disaster, while considering possible disruptions in blood facilities and transportation routes. A Lagrangian relaxation-based algorithm is developed that is capable of solving large-scale instances of the model. We apply this framework to a real case study of blood banks in Jordan.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    35
    Citations
    NaN
    KQI
    []