Eh?Legalizer: A High Performance Standard-Cell Legalizer Observing Technology Constraints

2018 
The legalization step is performed after global placement where wire length and routability are optimized or during timing optimization where buffer insertion or gate sizing are applied to meet timing requirements. Therefore, an ideal legalization approach must preserve the quality of the input placement in terms of routability, wire length, and timing constraints. These requirements indirectly impose maximum and average cell movement constraints during legalization. In addition, the legalization step should effectively manage white space availability with a highly efficient runtime in order to be used in an iterative process such as timing optimization. In this article, a robust and fast legalization method called Eh?Legalizer for standard-cell placement is presented. Eh?Legalizer legalizes input placements while minimizing the maximum and average cell movements using a highly efficient novel network flow-based approach. In contrast to the traditional network flow-based legalizers, areas with high cell utilizations are effectively legalized by finding several candidate paths and there is no need for a post-process step. The experimental results conducted on several benchmarks show that Eh?Legalizer results in 2.5 times and 3.3 times less the maximum and average cell movement, respectively, while its runtime is significantly (18×) lower compared to traditional legalizers. In addition, the experimental results illustrate the scalability and robustness of Eh?Legalizer with respect to the floorplan complexity. Finally, the detailed-routing results show detailed-routing violations are reduced on average by 23% when Eh?Legalizer is used to generate legal solutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    6
    Citations
    NaN
    KQI
    []