Facile Construction of Long-Lasting Antibacterial Membrane by Using an Orientated Halloysite Nanotubes Interlayer

2018 
Membrane separation technologies have shown a brilliant potential in the field of water treatment and biotechnology and pharmaceutical industries. Surface biofouling featuring inherent complexity and hard treatability severely impedes the development of polymeric membranes, posing a significant decline in their performance and lifespan. Silver nanoparticles (Ag NPs) offer the best solutions to inhibit bacteria growth and proliferation, whereas it remains challenging to confer a long-term bactericidal ability to membranes. In this study, we developed a novel approach to in situ anchor Ag NPs on membrane surface by implementing natural clay (halloysite nanotubes, HNTs) as an interlayer. The combination of well-aligned HNTs and nanosilver endows the membranes with high dye retention, salt permeation, and water permeability. Most importantly, this novel membrane exhibited a strong, long-lasting antibacterial behavior toward Escherichia coli. This strategy furnishes a new pathway in the rational assembly of Ag...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    11
    Citations
    NaN
    KQI
    []