Ultrasmall gold nanosatellite-bearing transformable hybrid nanoparticles for deep tumor penetration

2018 
Abstract Since delivering drugs to an entire tumoral region leads to high therapeutic efficacy and good prognosis, achieving deep tumoral penetration of drugs is a major issue in cancer treatment. In this regard, conventional nanomedicines (>50 nm) have shown limitations in cancer therapy, primarily attributed to the heterogeneous distribution of drugs because of the physiological barrier of the tumor interstitial space. To address this issue, we prepared transformable hybrid nanoparticles (TNPs) consisting of a pH-responsive nanocarrier (PEG-PBAE) and doxorubicin (DOX)-conjugated ultrasmall ( Statement of Significance Deep tumor penetration of anticancer drug is an important issue for high therapeutic efficacy. If the drugs cannot reach cancer cells in a sufficient concentration, their effectiveness will be limited. In this regard, conventional nanomedicine showed only modest therapeutic efficacy since they cannot deliver their payloads to the deep site of tumor tissue. This heterogeneous distribution of the drug is primarily attributed to the physiological barriers of the tumor microenvironment, including a dense extracellular matrix. To surmount this challenge, we developed tumor acidity-triggered transformable nanoparticles. By encapsulating doxorubicin-conjugated ultrasmall gold nanosatellites into the nanoparticles, the drug was not significantly bound to genetic materials, resulting in its minimal sequestration near the vasculature and deep tumor penetration. Our strategy could resolve not only the poor penetration issue of the drug but also its restricted tumor accumulation, suggesting the potential as an effective nanotherapeutics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    14
    Citations
    NaN
    KQI
    []