The Nuclear Receptor-Coactivator Interaction Surface as a Target for Peptide Antagonists of the Peroxisome Proliferator-Activated Receptors

2007 
The peroxisome proliferator-activated receptors (PPARα, PPARδ, and PPARγ) constitute a family of nuclear receptors that regulates metabolic processes involved in lipid and glucose homeostasis. Although generally considered to function as ligand-regulated receptors, all three PPARs exhibit a high level of constitutive activity that may result from their stimulation by intracellularly produced endogenous ligands. Consequently, complete inhibition of PPAR signaling requires the development of inverse agonists. However, the currently available small molecule antagonists for the PPARs function only as partial agonists, or their efficacy is not sufficient to inhibit the constitutive activity of these receptors. Due to the lack of efficacious antagonists that interact with the ligand-binding domain of the PPARs, we decided to target an interaction that is central to nuclear receptor-mediated gene transcription: the nuclear receptor-coactivator interaction. We utilized phage display technology to identify short L...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    36
    Citations
    NaN
    KQI
    []