Gastrointestinal dopamine as an anti-incretin and its possible role in bypass surgery as therapy for type 2 diabetes with associated obesity.

2016 
The objective of this review is to summarize and integrate specific clinical observations from the field of gastric bypass surgery and recent findings in beta cell biology. When considered together, these data sets suggest a previously unrecognized physiological mechanism which may explain how Roux-en-Y gastric bypass (RYGB) surgery mediates the early rapid reversal of hyperglycemia, observed before weight loss, in certain Type 2 Diabetes Mellitus (T2DM) patients. The novel mechanism is based on a recently recognized inhibitory circuit of glucose stimulated insulin secretion driven by dopamine (DA) stored in β-cell vesicles and the gut. We propose that dopamine (DA) and Glucagon like peptide 1 (GLP-1) represent two opposing arms of a glucose stimulated insulin secretion (GSIS) regulatory system and hypothesize that DA represents the “anti incretin” hypothesized to explain the beneficial effects of bariatric surgery on T2DM. These new hypotheses and the research driven by them may directly impact our understanding of: 1) the mechanisms underlying improved glucose homeostasis seen before weight loss following bariatric surgery, and 2) the regulation of glucose stimulated insulin secretion within islets. On a practical level, these studies may result in the development of novels drugs to modulate insulin secretion and/or methods to quantitatively asses in real time beta cell function and mass.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    105
    References
    15
    Citations
    NaN
    KQI
    []