Band engineering of a Si quantum dot solar cell by modification of B-doping profile

2017 
Abstract A Si quantum dot (QD) heterojunction solar cell with a p-type Si QD layer on an n-type crystalline Si wafer was developed, and the effect of the boron (B)-doping profile in the Si QD layer was investigated. The doping concentration of B in the p-type Si QD layer was optimized at 5.71×10 21 atoms/cm 3 , and high power conversion efficiency (PCE) of 14.15% was achieved at the optimized B concentration. A Si QD solar cell having a Si QD layer with a double-step B-doping profile was suggested to enhance the vertical charge carrier transport in the Si QD layer. As a result of the B-doping profile change from a single-step to double-step, the PCE of the Si QD solar cell was increased from 14.41% to 14.98%. In the Si QD solar cell with a double-step B-doping profile, quantum efficiency analysis showed that the improvement in short circuit current within short wavelength region under 650 nm can be related with the additional built-in E-field caused by the band structure modification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    12
    Citations
    NaN
    KQI
    []