Biomechanical Simulation of Vaginal Childbirth: The Colors of the Pelvic Floor Muscles

2019 
Childbirth-related trauma is a recurrent and widespread topic due to the disorders it can trigger, such as urinary and/or anal incontinence, and pelvic organ prolapse, affecting women at various levels. Pelvic floor dysfunction often results from weakening or direct damage to the pelvic floor muscles (PFM) or connective tissue, and vaginal delivery is considered the primary risk factor. Elucidating the normal labor mechanisms and the impact of vaginal delivery in PFM can lead to the development of preventive and therapeutic strategies to minimize the most common injuries. By providing some understanding of the function of the pelvic floor during childbirth, the existing biomechanical models attempt to respond to this problem. These models have been used to estimate the mechanical changes on PFM during delivery, to analyze fetal descent, the effect of the fetal head molding, and delivery techniques that potentially contribute to facilitating labor and reducing the risk of muscle injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    1
    Citations
    NaN
    KQI
    []