High throughput competitive fluorescence polarization assay reveals functional redundancy in the S100 protein family

2019 
The calcium-binding, vertebrate-specific S100 protein family consists of 20 paralogs in humans (referred as the S100ome), with several clinically important members. To assess their interactome, high-throughput, systematic analysis is indispensable, which allows one to get not only qualitative but quantitative insight into their protein-protein interactions (PPIs). We have chosen an unbiased assay, fluorescence polarization (FP) that revealed a partial functional redundancy when the complete S100ome (n=20) was tested against numerous model partners (n=13). Based on their specificity, the S100ome can be grouped into two distinct classes: promiscuous and orphan. In the first group, members bound to several ligands (>4-5) with comparable high affinity, while in the second one, the paralogs bound only one partner weakly, or no ligand was identified (orphan). Our results demonstrate that in vitro FP assays are highly suitable for quantitative ligand binding studies of selected protein families. Moreover, we provide evidence that PPI-based phenotypic characterization can complement the information obtained from the sequence-based phylogenetic analysis of the S100ome, an evolutionary young protein family.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    4
    Citations
    NaN
    KQI
    []