Numerical Simulations of Two Trapped Mountain Lee Waves Downstream of Oahu

2017 
AbstractTwo trapped lee-wave events dominated by the transverse mode downstream of the island of Oahu in Hawaii—27 January 2010 and 24 January 2003—are simulated using the Weather Research Forecasting (WRF) Model with a horizontal grid size of 1 km in conjunction with the analyses of soundings, weather maps, and satellite images. The common factors for the occurrences of these transverse trapped mountain-wave events are 1) Froude number [Fr = U/(Nh)] > 1, where U is the upstream speed of the cross-barrier flow, N is stability, and h is the mountain height; 2) insufficient convective available potential energy for the air parcel to become positively buoyant after being lifted to the top of the stable trade wind inversion layer; and 3) increasing cross-barrier wind speed with respect to height through the stable inversion layer, satisfying Scorer’s criteria between the inversion layer and the layer aloft. Within the inversion layer, where the Scorer parameter has a maximum, the wave amplitudes are the great...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    8
    Citations
    NaN
    KQI
    []