Palladium Catalysis in Horizontal-Flow Treatment Wells: Field-Scale Design and Laboratory Study

2002 
This paper discusses the field-scale design and associated laboratory experiments for a new groundwater remediation system that combines palladium-catalyzed hydrodehalogenation with the use of dual horizontal-flow treatment wells (HFTWs). Palladium (Pd) catalysts can treat a wide range of halogenated compounds, often completely and rapidly dehalogenating them. The HFTW system recirculates water within the treatment zone and provides the opportunity for multiple treatment passes, thereby enhancing contaminant removal. The combined Pd/HFTW system is scheduled to go on line in mid-2002 at Edwards Air Force Base in southeastern California, with groundwater contaminated with 0.5 to 1.5 mg/L of trichloroethylene (TCE). Laboratory work, performed in conjunction with the field-scale design, provided reaction rates for field-scale design and information on long-term catalyst behavior. The apparent first-order reaction rate constant for TCE was 0.43/min, corresponding to a half-life of 1.6 min. Over the long term (1 to 2 months), the reaction rate decreased, indicating catalyst deactivation. The data show three distinct deactivation rates: a slow rate of 0.03/day over approximately the first month, followed by faster deactivation at 0.16 to 0.19/day. The final, fastest deactivation (0.55/day) was attributed to an artifact of the laboratory setup, which caused unnaturally high sulfide concentrations through bacterial reduction ofmore » sulfate to sulfide, a known catalyst poison. Sodium hypochlorite recovered the catalyst activity, and is expected to maintain activity in the field with periodic pulses to regenerate the catalyst and control growth of sulfate-reducing bacteria.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []