Predicting Reaction Products and Automating Reactive Trajectory Characterization in Molecular Simulations with Support Vector Machines

2019 
A machine learning-based methodology for the prediction of chemical reaction products, along with automated elucidation of mechanistic details via phase space analysis of reactive trajectories, is introduced using low-dimensional heuristic models and then applied to ab initio computer simulations of the photodissociation of acetaldehyde, an important chemical system in atmospheric chemistry. Our method is centered around training Support Vector Machines (SVMs) to identify optimal separatrices that delineate the regions of phase space that lead to different chemical reaction products. In contrast to the more common “black box” type machine learning methodologies for analyzing chemical simulation data, this SVM-based methodology allows for mechanistic insight to be gleaned from further analysis of the positioning of the phase space points used to train the SVM with respect to the separatrices. For example, a pair of phase space points that are in close proximity to each other but on opposite sides of a sepa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    2
    Citations
    NaN
    KQI
    []