PVD Coating of Mg–AZ31 by Thin Layer of Al and Al–Si

2010 
Although magnesium alloys have the advantage of high specific strength, they have poor atmospheric corrosion resistance. An important method of improving the corrosion resistance is by applying a coating layer. In this work, the physical vapor deposition (PVD) technique is used for coating a magnesium (Mg) AZ31 sheet substrate with a thin layer of high purity aluminum (Al) and Al–12.6% Si. Aluminum is expected to be suitable as a coating layer on Mg sheets, due to its corrosion resistance and its formability. Before coating, the substrate was subjected to several consecutive surface preparations, including sand-blasting, mechanical grinding, mirror-like polishing, ultrasonic etching, and finally ion etching by magnetron sputtering (MS). PVD coating was conducted using a PVD machine with max electron beam power and voltage of 100 kW and 40 kV, respectively. This was either with or without plasma activation, and with variable substrate speeds ranging between 10 and 70 mm/s. During MS ion etching and coating, the substrate temperature increased. The substrate temperature increased with the application of plasma activation and with lower substrate speeds. The coating-layer thickness varied inversely with substrate speed. A thinner coat with finer morphology was obtained in the case of plasma activation. Other results included coating layer characteristics, diffusion between the AZ 31 substrate and the Al coating layer, adhesion of the coating layer to the substrate, and corrosion resistance by a humidity test.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    18
    Citations
    NaN
    KQI
    []