Competition between Phase Separation and Spin Density Wave or Charge Density Wave Order: The Role of Long-Range Interactions.

2019 
Recent studies of pairing and charge order in materials such as FeSe, SrTiO$_3$, and 2H-NbSe$_2$ have suggested that momentum dependence of the electron-phonon coupling plays an important role in their properties. Initial attempts to study Hamiltonians which either do not include or else truncate the range of Coulomb repulsion have noted that the resulting spatial non-locality of the electron-phonon interaction leads to a dominant tendency to phase separation. Here we present Quantum Monte Carlo results for such models in which we incorporate both on-site and intersite electron-electron interactions. We show that these can stabilize phases in which the density is homogeneous and determine the associated phase boundaries. As a consequence, the physics of momentum dependent electron-phonon coupling can be determined outside of the trivial phase separated regime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    5
    Citations
    NaN
    KQI
    []