IShTAR: A test facility to study the interaction between RF wave and edge plasmas

2019 
Existence of high electric fields near an RF antenna launcher causes a number of parasitic phenomena, such as arcing and impurity release, which seriously deteriorate the performance of an Ion Cyclotron Range of Frequencies (ICRF) heating scheme in fusion devices. Limited accessibility of the near antenna region in large-scale fusion experiments significantly complicates the associated experimental studies. The IShTAR test facility has been developed with the requirement to provide a better accessibility and diagnosability of plasmas in the direct vicinity of an ICRF antenna. The purpose of this work is to give a detailed description on the experimental setup and the available diagnostics. Furthermore, the paper will demonstrate the capability of the experiment to study phenomena near an ICRF antenna launcher which are relevant for large-scale fusion ion cyclotron resonance heating systems.Existence of high electric fields near an RF antenna launcher causes a number of parasitic phenomena, such as arcing and impurity release, which seriously deteriorate the performance of an Ion Cyclotron Range of Frequencies (ICRF) heating scheme in fusion devices. Limited accessibility of the near antenna region in large-scale fusion experiments significantly complicates the associated experimental studies. The IShTAR test facility has been developed with the requirement to provide a better accessibility and diagnosability of plasmas in the direct vicinity of an ICRF antenna. The purpose of this work is to give a detailed description on the experimental setup and the available diagnostics. Furthermore, the paper will demonstrate the capability of the experiment to study phenomena near an ICRF antenna launcher which are relevant for large-scale fusion ion cyclotron resonance heating systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    3
    Citations
    NaN
    KQI
    []