Multi-target simultaneous ISAR imaging based on compressed sensing

2016 
Conventional range-Doppler (RD) inverse synthetic aperture radar (ISAR) imaging method utilizes coherent integration of consecutive pulses to achieve high cross-range resolution. It requires the radar to keep track of the target during coherent processing intervals (CPI). This restricts the radar’s multi-target imaging ability, especially when the targets appear simultaneously in different observing scenes. To solve this problem, this paper proposes a multi-target ISAR imaging method for phased-array radar (PAR) based on compressed sensing (CS). This method explores and exploits the agility of PAR without changing its structure. Firstly, the transmitted pulses are allocated randomly to different targets, and the ISAR image of each target can be then reconstructed from limited echoes using CS algorithm. A pulse allocation scheme is proposed based on the analysis of the target’s size and rotation velocity, which can guarantee that every target gets enough pulses for effective CS imaging. Self-adaptive mechanism is utilized to improve the robustness of the pulse allocation method. Simulation results are presented to demonstrate the validity and feasibility of the proposed approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    3
    Citations
    NaN
    KQI
    []