Gold-nanofève surface-enhanced Raman spectroscopy visualizes hypotaurine as a robust anti-oxidant consumed in cancer survival

2018 
Gold deposition with diagonal angle towards boehmite-based nanostructure creates random arrays of horse-bean-shaped nanostructures named gold-nanofeve (GNF). GNF generates many electromagnetic hotspots as surface-enhanced Raman spectroscopy (SERS) excitation sources, and enables large-area visualization of molecular vibration fingerprints of metabolites in human cancer xenografts in livers of immunodeficient mice with sufficient sensitivity and uniformity. Differential screening of GNF-SERS signals in tumours and those in parenchyma demarcated tumour boundaries in liver tissues. Furthermore, GNF-SERS combined with quantum chemical calculation identified cysteine-derived glutathione and hypotaurine (HT) as tumour-dominant and parenchyma-dominant metabolites, respectively. CD44 knockdown in cancer diminished glutathione, but not HT in tumours. Mechanisms whereby tumours sustained HT under CD44-knockdown conditions include upregulation of PHGDH, PSAT1 and PSPH that drove glycolysis-dependent activation of serine/glycine-cleavage systems to provide one-methyl group for HT synthesis. HT was rapidly converted into taurine in cancer cells, suggesting that HT is a robust anti-oxidant for their survival under glutathione-suppressed conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    42
    Citations
    NaN
    KQI
    []