Uranium association with halophilic and non-halophilic bacteria and archaea

2004 
We determined the association of uranium with bacteria isolated from the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico, and compared this with known strains of halophilic and non-halophilic bacteria and archaea. Examination of the cultures by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) showed uranium accumulation extracellularly and/or intracellularly to a varying degree. In Pseudomonas fluorescens and Bacillus subtilis uranium was associated with the cell surface and in the latter it was present as irregularly shaped grains. In Halobacterium halobium, the only archeon studied here, uranium was present as dense deposits and with Haloanaerobium praevalens as spikey deposits. Halomonas sp. isolated from the WIPP site accumulated uranium both extracellularly on the cell surface and intracellularly as electron-dense discrete granules. Extended X-ray absorption fine structure (EXAFS) analysis of uranium with the halophilic and non-halophilic bacteria and archaea showed that the uranium present in whole cells was bonded to an average of 2.4′0.7 phosphoryl groups at a distance of 3.65′0.03 A. Comparison of whole cells of Halomonas sp. with the cell wall fragments of lysed cells showed the presence of a uranium bidentate complex at 2.91′0.03 A with the carboxylate group on the cell wall, and uranyl hydroxide with U-U interaction at 3.71′0.03 A due to adsorption or precipitation reactions; no U-P interaction was observed. Addition of uranium to the cell lysate of Halomonas sp. resulted in the precipitation of uranium due to the inorganic phosphate produced by the cells. These results show that the phosphates released from bacteria bind a significant amount of uranium. However, the bacterially immobilized uranium was readily solubilized by bicarbonate with concurrent release of phosphate into solution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    89
    Citations
    NaN
    KQI
    []