In situ fabrication of hollow silica confined defective molybdenum oxide for enhanced catalytic oxidative desulfurization of diesel fuels

2021 
Abstract Hollow nanomaterials are considered to be excellent carriers due to the nanoreactor confinement effect, which can improve the performance of the supported catalysts. In this work, a hollow silica confined defective molybdenum oxide catalyst (MoOx/HS) was obtained by using phosphomolybdic acid grafted polystyrenes as the templates. Compared with solid silica-supported catalyst (MoO3/SS), MoOx/HS could make better use of active components to achieve complete desulfurization. The calculated turnover value (TON) of MoOx/HS was 1.37 mol/mol, which is three times more than that of MoO3/SS. The presence of oxygen defects also facilitated the oxidation reaction. In addition, the catalyst MoOx/HS had good stability and selectivity, and the desulfurization rate of dibenzothiophene (DBT) remained 95.3% after being recycled for 5 times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    2
    Citations
    NaN
    KQI
    []