Association of PAHs and BTEX exposure with lung function and respiratory symptoms among a nonoccupational population near the coal chemical industry in Northern China

2018 
Abstract Emissions (particularly aromatic compounds) from coal industries and biomass fuels combustion lead to high health risks for neighboring residents. To investigate the association of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and 1,2-dimethylbenzene (BTEX) exposure with lung function and respiratory symptoms among adults and children near the coal-chemical industry in Northern China, adults and children from a county dotted with coal chemical industry were chosen as subjects for investigation (investigated area, IR). The control group consisted of adults and children from an agricultural county (control area, CR). The environmental and urinary PAH and BTEX levels of adults and children were determined by isotope dilution liquid chromatography coupled with tandem mass spectrometry. The Mann-Whitney U test and multivariate linear regression models were used to analyze the relationship between pollutant exposure and the respiratory system. The results showed that in an ambient environment, levels of PAHs and BTEX in the IR were significantly higher than those in the CR. Particularly, the concentration profiles for air samples were IR > CR and indoor > outdoor. Both for adults and children, the geometric (GM) concentrations of urinary PAHs and BTEX from the IR were significantly higher than those measured in the CR. Additionally, the urinary PAH exposure level profiles of smokers were higher than those of nonsmokers, indicating that indoor air and smoking were both important nonoccupational exposure sources. The decline of the forced expiratory in the first second (FEV 1 , %) and the forced expiratory middle flow rate (FEF 25% ) in children were associated with increasing urinary PAH metabolite levels ( p p 25% with the coefficient of −0.166, −0.201 and −0.175 ( p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    22
    Citations
    NaN
    KQI
    []