The Spatial and Temporal Influence of Cloud Cover on Satellite-Based Emergency Mapping of Earthquake Disasters
2019
The ability to rapidly access optical satellite imagery is now an intrinsic component of managing the disaster response that follows a major earthquake. These images provide synoptic data on the impacts, extent, and intensity of damage, which is essential for mitigating further losses by feeding into the response coordination. However, whilst the efficiency of the response can be hampered when cloud cover limits image availability, spatio-temporal variations in cloud cover have never been considered as part of the design of effective disaster mapping. Here we show how annual variations in cloud cover may affect our capacity to respond rapidly throughout the year and consequently contribute to overall earthquake risk. We find that on a global scale when accounting for cloud, the worst time of year for an earthquake disaster is between June and August. During these months, 40% of the global population at risk from earthquakes are obscured from optical satellite view for >3 consecutive days. Southeastern Asia is particularly strongly affected, accounting for the majority of the population at risk from earthquakes that could be obscured by cloud in every month. Our results demonstrate the importance of the timing of earthquakes in terms of our capacity to respond effectively, highlighting the need for more intelligent design of disaster response that is not overly reliant on optical satellite imagery.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
37
References
11
Citations
NaN
KQI