Stable Dropwise Condensation of Ethanol and Hexaneon Rationally Designed Ultrascalable Nanostructured Lubricant-InfusedSurfaces

2019 
Vapor condensation is a widely used industrial process for transferring heat and separating fluids. Despite progress in developing low surface energy hydrophobic and micro/nanostructured superhydrophobic coatings to enhance water vapor condensation, demonstration of stable dropwise condensation of low-surface-tension fluids has not been achieved. Here, we develop rationally designed nanoengineered lubricant-infused surfaces (LISs) having ultralow contact angle hysteresis (<3°) for stable dropwise condensation of ethanol (γ ≈ 23 mN/m) and hexane (γ ≈ 19 mN/m). Using a combination of optical imaging and rigorous heat transfer measurements in a controlled environmental chamber free from noncondensable gases (<4 Pa), we characterize the condensation behavior of ethanol and hexane on ultrascalable nanostructured CuO surfaces impregnated with fluorinated lubricants having varying viscosities (0.496 < μ < 5.216 Pa·s) and chemical structures (branched versus linear, Krytox and Fomblin). We demonstrate stable drop...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    53
    Citations
    NaN
    KQI
    []